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1. Introduction

• What is an observability problem for a control system?

• Roughly speaking, it concerns whether one can recover the state
of a system by some partial knowledge of the state (which is
called the observation of the system).

• For an equation, it means that whether one can determine the
solution uniquely by some partial knowledge of the equation
(this is called the unique continuation problem for the equa-
tion).
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• For any analytic function f (x , y) (say, in G ⊂ R2), if f vanishes
infinite order at a point x ∈ G , then f |G = 0.

• Consider the following elliptic equation:

uxx + uyy = 0 in G . (1)

• If u vanishes infinite order at a point x ∈ G , can we conclude
that u|G = 0?

• If one can show that u is analytic, then it is easy to show that
the above conclusion holds.
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• What will happen if u is not analytic?

• How about the following equation:

uxx + uyy = a(x)u in G (2)

for some nonanalytic a?

• The unique continuation prperty is still true. This can be proved
by T. Carleman in 1939.
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• Let us recall Carleman’s result briefly. We begin with the following notion:

A function y ∈ L2
loc (Rn) is said to vanish of infinite order at x0 ∈ Rn if

there exists an R > 0 so that for each integer N ∈ N, there is a constant

CN > 0 satisfying that∫
B(x0,r)

y2dx ≤ CN r2N , ∀ r ∈ (0,R).

• Let P = −∆ + V with V ∈ L∞
loc (R2). T. Carleman showed that any

solution y ∈ H1
loc(R2) to Py = 0 (in the sense of distribution) equals zero

if it vanishes of infinite order at some x0 ∈ R2. To prove this result, he

introduced a new method, now known as the Carleman estimate.

• In 1954, C. Müller extended the above method to elliptic equations on Rn.
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• How about solutions to other type equations?

• Generally speaking, one cannot get the above strong result.
For example, due to the finite speed of propagation, the about
unique continuation property does not hold for hyperbolic equa-
tion.

• Some weaker formulations are as follows:

• If u vanishes in a subset F ⊂ G , can we conclude that u|G = 0?

• Does u|F = 0 imply u|O(F ) = 0? Here O(F ) is an (open)
neighborhood of F .
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• The study of UCP for PDEs began at the very beginning of the
last century.

• Especially, there is a climax in the last 1950-70’s. The contrib-
utors include Calderón, Hörmander, Nirenberg etc.

• Classical results/tools include Carleman estimate, Frequency
method, and so on.
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• In the recent 20 years, due to applications, the study of UCP
is active again.

• Some typical applications are as follows:

• In Control theory, an approximate controllability problem can be
reduced to a suitable unique continuation problem (e.g. Russell,
SIAM Rev. 20 (1978)).

• In Inverse problems, the uniqueness of the unknown coefficients
can be reduced to a suitable unique continuation problem (e.g.
Klibanov, Inverse Problems 8 (1992)).
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• Furthermore, UCP has lots of applications in the study of PDEs
themselves.

• Some typical applications are:

• Donnelly & Fefferman, Invent. Math. 1988, for the study of
nodal sets of solutions.

• Bourgain & Kenig, Invent. Math. 2005, for the study of the
Anderson localization.

• Escauriaza, Kenig, Ponce & Vega, Comm. Math. Phys. 2011,
for the study of concentration profiles of blow-up solutions.
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2. Carleman estimate for PDEs

• Let P(x ,D) be a m-th order partial differential operator with smooth bounded

coefficients. A Carleman estimate is an estimate in the following forms:

∑
|α|≤m−1

τ2(m−|α|)−1
∫
Rn
|Dαu|2 e2τϕdx

≤ K1

∫
Rn
|P(x ,D)u|2e2τϕdx , u ∈ C∞0 (G), τ > τ0;

or

∑
|α|≤m−1

τ2(m−|α|)−1
∫
Rn
|Dαu|2 e2τϕdx

≤K2

∫
Rn
|P(x ,D)u|2e2τϕdx+K3

∑
|α|≤m−2

τ2(m−|α|)−1
∫
Rn
|Dαu|2 e2τϕdx ,

u ∈ C∞0 (G), τ > τ0.
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• Let us consider some examples.

• Let a > 0. It holds that

2a

∫
R
|u|2eat2

dt ≤
∫
R

∣∣∣∣dudt
∣∣∣∣2 eat2

dt, u ∈ C∞0 (R) . (3)

• Proof. Set v(t) = u(t)eat
2/2. By means of an integration by

parts,∫
R

∣∣u′(t)
∣∣2 eat2

dt =

∫
R

∣∣v ′(t)− atv(t)
∣∣2 dt

=

∫
R

∣∣v ′(t) + atv(t)
∣∣2 dt + 2a

∫
R
|v(t)|2dt

≥ 2a

∫
R
|u(t)|2eat2

dt.
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• Let α be a real constant. The estimate holds

4α

∫
R2

|v |2eα(t2+s2)dsdt ≤
∫
R2

∣∣∣∂v
∂s

+ i
∂v

∂t

∣∣∣2eα(t2+s2)dsdt.

• Writing

v(s, t)e
1
2
α(s2+t2) = w(s, t).

By integration by parts, we have∫
R2

∣∣∣∂v
∂s

+ i
∂v

∂t

∣∣∣2eα(t2+s2)dsdt

=

∫
R2

∣∣∣∂w
∂s

+ i
∂w

∂t
− α(s + it)w

∣∣∣2dsdt
=

∫
R2

∣∣∣∂w
∂s
− i

∂w

∂t
+ α(s − it)w

∣∣∣2dsdt + 4α

∫
R2

|w |2dsdt.
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• Generally, we have the following result.

• Let

A(x) =
n∑

j=1

ajkxjxk ,

where ajk = akj , j , k = 1, · · · , n.

• Let b = (b1, · · · , bn) be a vector in Cn, then it holds that

2
n∑

j ,k=1

ajkbj b̄k

∫
Rn

|u|2eAdx ≤
∫
Rn

∣∣∣ n∑
j=1

bjDju
∣∣∣2eAdx , ∀u∈C∞0 (Rn) .
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3. Observability of Stochastic Heat Equations

• Consider the following stochastic parabolic equation:

dy −∆ydt = aydt + bydW (t) in G × (0,T ). (4)

• Here a ∈ L∞F (0,T ; L∞(G )) and b ∈ L∞F (0,T ;W 1,∞(G )).

• Theorem 4(X. Zhang, Differential Integral Equations,2008):
Let G0 ⊂ G . If y = 0 in G0 × (0,T ), P-a.s., then y = 0 in
G × (0,T ), P-a.s.

• Theorem 5(S. Tang, et al, SICON, 2009): Let G0 ⊂ G . If
G be bounded domain with a C 2 boundary, y(0) ∈ L2(G ) and
y = 0 on (0,T )× ∂G , then for any t ∈ (0,T ],

E|y(t)|2L2(G) ≤ C (t)

∫ T

0

∫
G0

|y |2dxds.
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3. Observability of Stochastic Heat Equations
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• Borrowing some idea from Escauriaza, Duke Math. J., 2000,
we prove that

• Theorem 6( L & Z. Yin, ESAIM:COCV,2015): Let G0 ⊂ G .
1. If y = 0 on G0 × {t0}, P-a.s., for a t0 ∈ (0,T ], then y = 0
on G × {t0}, P-a.s.
2. If y = 0 on ∂G × (0,T ), then y = 0 on G × (0,T ), P-a.s.
3. If G is bounded and convex, then

E|y(T0)|2L2(G) ≤ C |y(0)|2−2δ
L2(G)

(
E|y(T0)|2L2(G0)

)δ
for some δ ∈ (0, 1).
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• How about the strong UCP?

• Theorem 7(QL,2020): Let y ∈ L2
F(0,T ;H1

loc(Ω)) ∩ L2
F(Ω;

C ([0,T ]; L2
loc(B1)) solves

dy −∆ydt = aydt + bydW in Ω× (0,T ). (5)

If for every k ∈ N we have

E
∫
Br

y2 (x , t0) dx = O
(
r2k
)
, as r → 0, (6)

then y(·, t0) = 0, in G , P-a.s. Furthermore, if (8) holds for any
t ∈ (0,T ), then y = 0, in G × (0,T ), P-a.s.
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• Is Theorem 7 is an easy corollary of the UCP for deterministic
heat equation?

• Let
z = e`y , ` = −b(t, x)W (t).

• Then,

dz = ∆zdt−(btW−a+b2+W∆b+|∇b|2W 2)zdt+2W∇b·∇zdt.

• Hence, z solves the following heat equation with random coef-
ficients

zt−∆z = 2e`W∇b ·∇z−(btW−a+b2 +W∆b+|∇b|2W 2)z .
(7)
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• Can we regard the sample point ω as a parameter and apply
the UCP for deterministic heat equation to get our result?

• One can show the following result:

• If for every k ∈ N we have∫
Br

y2 (ω, x , t0) dx = O
(
r2k
)
, as r → 0, P-a.s., (8)

then y(·, t0) = 0, in G , P-a.s. Furthermore, if y = 0 on ∂G ×
(0,T ), then y = 0, in G × (0,T ), P-a.s.

• However, by the above argument, we need a pointwise assump-
tion rather than the assumption on the expectation.
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• Theorem 7 is a corollary of following result:

• Theorem 8(two-sphere one-cylinder inequality in the interior)(QL, 2016): Let

R be a positive number and t0 ∈ R. Assume that u ∈ L2
F(t0 − R2, t0;H1(B1)) ∩

L2
F(Ω;C([t0 − R2, t0]; L2(B1)) is a solution to

du −∆udt = audt + budW in BR ×
(
t0 − R2, t0

]
. (9)

Then there exist constants η1 ∈ (0, 1) and C , C ≥ 1, such that for every r and

ρ such that 0 < r ≤ ρ ≤ η1R we have

E
∫
Bρ

u2(x ,t0)dx≤
CR

ρ

(
R−2E

∫
BR×(t0−R2,t0)

u2dxdt
)1−θ1

(
E
∫
Br

u2(x ,t0)dx
)θ1

,

(10)

where

θ1 =
1

C log R
r

. (11)
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• Proof of Theorem 8 is based on Carleman estimate.

• Let

θ (s) = s1/2
(

log
1

s

)3/2

, s ∈ (0, 1] . (12)

• Let γ ≥ 1 and

σ (s) = s exp

(
−
∫ γs

0

(
1− exp

(
−
∫ t

0

θ (η)

η
dη

))
dt

t

)
. (13)

• Set

φ (x , t) = − |x |2

8(T0 − t + λ)
− (α + 1) log σ(T0 − t + λ). (14)
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• Lemma 1: There exist constants C ≥ 1, η0 ∈ (0, 1) and δ1 ∈ (0, 1), such that

for every α, α ≥ 2, λ, 0 < λ ≤
δ2

4α
, δ ∈ (0, δ1] and u solves

du −∆udt = audt + budW (t) in Rn × (0,∞),

with supp u ⊂ Q
4
= Bη0 × [0, δ2/2α), the following inequality holds true

E
∫
Q

{
(T0−t+λ)

[
∆v+(|∇φ|2−∂tφ)v

]
−

1

2
v
}

(T0−t+λ)etφ
(
du−∆udt

)
dx

+C
(
eC0γ

)2α+ 5
2 E
∫
Q

[
u2 + (T0 − t + λ)|∇u|2

]
e2φdxdt

≥
α+1

C
E
∫
Q
θ
(
γ(T0−t+λ)

)
u2e2φdxdt+

1

C
E
∫
Q
θ
(
γ(T0−t+λ)

)
t|∇u|2e2φdxdt

+E
∫
Q
|Sv |2dxdt + λ2E

∫
Rn
|∇v(x , 0)|2dx +

λ

2
E
∫
Rn

v(x , 0)2dx

−λ2E
∫
Rn

(
|∇φ(x , 0)|2 − ∂tφ(x , 0)

)
v2(x , 0)dx ,

where Sv = (T0 − t + λ)
[
∆v + (|∇φ|2 + ∂tφ)v

]
− 1

2
v .



Outline 1. Introduction 2. Carleman estimate 3. Observability of Stochastic Heat Equations 4. Observability for Stochastic Wave Equations

4. Observability for Stochastic Wave Equations

• Consider the following stochastic wave equation:

adzt −∆zdt =
[
b1zt + (b2,∇z) + b3z

]
dt + b4zdW (t) (15)

• Theorem 13 (L & Yin, 2020, COCV): Let x0 ∈ Γ\∂Γ such that
∂a(x0,0)
∂ν <

0, and let Γ satisfy the outer paraboloid condition with

κ <
− ∂a∂ν (x0, 0)

4(|a|L∞(Bρ(x0,0)) + 1)
. (16)

Let y ∈ L2
F(Ω; C([0, 2T ]; H1

loc (Rn))) ∩ L2
F(Ω; C 1([0, 2T ]; L2

loc(Rn))) solve

the equation (1) satisfying that

y =
∂y

∂ν
= 0 on (0, 2T )× Γ, P-a.s. (17)

Then, there is a neighborhood V of x0 and T1 ∈ (0,T ) such that

y = 0 in (V ∩ D+)× (T − T1,T + T1), P-a.s. (18)
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• Lemma 2: Let `,Ψ ∈ C2((0,T )×Rn). Assume u is an H2
loc (Rn)-valued {Ft}t≥0-

adapted process such that ut is an L2(Rn)-valued semimartingale. Set θ = e`

and v = θu. Then, for a.e. x ∈ Rn and P-a.s. ω ∈ Ω,

θ
(
− 2a`tvt + 2∇` · ∇v + Ψv

)(
adut −∆udt

)
+

n∑
i=1

[ n∑
j=1

(
2`jvivj−`iv2

j

)
−2`tvivt +a`iv

2
t +Ψviv−

(
A`i +

Ψi

2

)
v2
]
i
dt

+d
[
a

n∑
i=1

`tv
2
i −2a

n∑
i=1

`ivivt +a2`tv
2
t −aΨvtv+

(
aA`t +

(aΨ)t

2

)
v2
]

=
{[

(a2`t)t +
n∑

i=1

(a`i )i − aΨ
]
v2
t − 2

n∑
i=1

[(a`i )t + (a`t)i ]vivt

+
n∑

i=1

[
(a`t)t +

n∑
j=1

(2`ij − `jj ) + Ψ
]
v2
i

+Bv2 +
(
− 2a`tvt + 2∇` · ∇v + Ψv

)2
}
dt + a2θ2lt(dut)

2,

where A and B are A
4
= a(`2

t − `tt)− |∇`|2 + ∆`−Ψ,

B
4
= AΨ + (aA`t)t − div (A∇`) +

[
(aΨ)tt −∆Ψ

]
/2.
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• Near 0, we will parameterize Γ by

x1 = γ(x2, · · · , xn), |x2|2 + · · ·+ |xn|2 < ρ. (19)

• We choose κ to satisfy that
κ <

α0

4(|a|L∞(Bρ(0,0)) + 1)
,

−κ
n∑

j=2

|xj |2 < γ(x2, · · · , xn) if

n∑
j=2

|xj |2 < ρ.

(20)

• Let N satisfy that 1 − 2Nκ > 0 and αN − 2(M0 + 1) > 0. We define a

weight function by

ψ(x , t) = Nx1 +
1

2

N∑
j=1

|xj |2 +
1

2
t2 +

1

2
ε, ` = λψ. (21)
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• Consider the following equation:
dzt −∆zdt = [b1zt + (b2,∇z) + b3z ]dt

+b4zdW (t) in G × (0,T ),

z = 0 on ∂G × (0,T ).

(22)

• Theorem 14(X. Zhang, SIMA, 2009): If z = 0 in Oδ(Γ0) ×
(0,T ), P-a.s., then z = 0 in G × (0,T ), P-a.s.
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• Consider the following stochastic wave equation:

dzt −∆zdt = (b1zt + b2 · ∇z + b3z) dt

+(b4z + g)dW (t) in Q,

z = 0 on Σ,

z(0) = z0, zt(0) = z1 in G .

(23)

• Here bi (1 ≤ i ≤ 4) are some suitable known functions; while
(z0, z1) ∈ L2

F0
(Ω;H1

0 (G )×L2(G )) and g ∈ L2
F(0,T ; L2(G )) are

unknown.
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• Theorem 15(L & Zhang, CPAM, 2015): Assume that the so-
lution z to (23) satisfies that z(T ) = 0 in G , P-a.s. Then it
holds that

|(z0, z1)|L2
F0

(Ω;H1
0 (G)×L2(G)) + |

√
T − tg |L2

F(0,T ;L2(G))

≤ C

∣∣∣∣∂z∂ν
∣∣∣∣
L2
F(0,T ;L2(Γ0))

.
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• The same conclusion as that in Theorem 10 does NOT hold true even for

the deterministic wave equation. Indeed, we choose any y ∈ C∞
0 (Q) so

that it does not vanish in some proper nonempty subdomain of Q. Put

f = ytt − ∆y . Then, it is easy to see that y solves the following wave

equation 
ytt −∆y = f in Q,

y = 0, on Σ,

y(0) = 0, yt(0) = 0 in G .

One can show that y(T ) = 0 in G and ∂y
∂ν = 0 on Σ. However, it is clear

that f does not vanish in Q.
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The main difficulty of the study of the control and observation
problems for SPDEs.

• 1. Very few are known for SPDEs., i.e., the well-posedness results of the

nonhomogeneous boundary value problems for SPDEs, the propagation of

singularities results of the solution for SPDEs, etc.

• 2. The stochastic settings lead some useful methods invalid, for exam-

ple, the lost of the compact embedding for the state spaces, i.e., although

L2(Ω; H1
0 (G)) ⊂ L2(Ω; L2(G)), the embedding is not compact, which vio-

lates the compactness -uniqueness argument. Another example is that the

irregularity of the solution with respect to the time variable.
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.

Thank you!
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