Observability Problem of Some Stochastic Partial Differential Equations

Qi Lü

Sichuan University

The 16th Workshop on Markov Process and Related Topics Beijing Normal University & Central South University

2021.7.16

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Outline

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

[1. Introduction](#page-2-0)

[2. Carleman estimate](#page-32-0)

- [3. Observability of Stochastic Heat Equations](#page-41-0)
- [4. Observability for Stochastic Wave Equations](#page-64-0)

1. Introduction

• What is an observability problem for a control system?

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

1. Introduction

- What is an observability problem for a control system?
- Roughly speaking, it concerns whether one can recover the state of a system by some partial knowledge of the state (which is called the observation of the system).

KORK ERKER ADE YOUR

1. Introduction

- What is an observability problem for a control system?
- Roughly speaking, it concerns whether one can recover the state of a system by some partial knowledge of the state (which is called the observation of the system).
- For an equation, it means that whether one can determine the solution uniquely by some partial knowledge of the equation (this is called the unique continuation problem for the equation).

KORK ERKER ADE YOUR

• For any analytic function $f(x,y)$ (say, in $G \subset \mathbb{R}^2$), if f vanishes infinite order at a point $x \in G$, then $f|_G = 0$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

- For any analytic function $f(x,y)$ (say, in $G \subset \mathbb{R}^2$), if f vanishes infinite order at a point $x \in G$, then $f|_G = 0$.
- Consider the following elliptic equation:

$$
u_{xx} + u_{yy} = 0 \qquad \text{in } G. \tag{1}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- For any analytic function $f(x,y)$ (say, in $G \subset \mathbb{R}^2$), if f vanishes infinite order at a point $x \in G$, then $f|_G = 0$.
- Consider the following elliptic equation:

$$
u_{xx} + u_{yy} = 0 \qquad \text{in } G. \tag{1}
$$

KORK ERKER ADE YOUR

• If u vanishes infinite order at a point $x \in G$, can we conclude that $u|_G = 0$?

- For any analytic function $f(x,y)$ (say, in $G \subset \mathbb{R}^2$), if f vanishes infinite order at a point $x \in G$, then $f|_G = 0$.
- Consider the following elliptic equation:

$$
u_{xx} + u_{yy} = 0 \qquad \text{in } G. \tag{1}
$$

KORK ERKER ADE YOUR

- If u vanishes infinite order at a point $x \in G$, can we conclude that $u|_G = 0$?
- If one can show that u is analytic, then it is easy to show that the above conclusion holds.

• What will happen if u is not analytic?

- What will happen if u is not analytic?
- How about the following equation:

$$
u_{xx} + u_{yy} = a(x)u \qquad \text{in } G \tag{2}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

for some nonanalytic a?

- What will happen if u is not analytic?
- How about the following equation:

$$
u_{xx} + u_{yy} = a(x)u \qquad \text{in } G \tag{2}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

for some nonanalytic a?

• The unique continuation prperty is still true. This can be proved by T. Carleman in 1939.

• Let us recall Carleman's result briefly. We begin with the following notion:

A function $y \in L^2_{loc}(\mathbb{R}^n)$ is said to vanish of infinite order at $x_0 \in \mathbb{R}^n$ if there exists an $R > 0$ so that for each integer $N \in \mathbb{N}$, there is a constant $C_N > 0$ satisfying that

$$
\int_{\mathcal{B}(x_0,r)} y^2 dx \leq C_N r^{2N}, \qquad \forall r \in (0,R).
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

• Let us recall Carleman's result briefly. We begin with the following notion:

A function $y \in L^2_{loc}(\mathbb{R}^n)$ is said to vanish of infinite order at $x_0 \in \mathbb{R}^n$ if there exists an $R > 0$ so that for each integer $N \in \mathbb{N}$, there is a constant $C_N > 0$ satisfying that

$$
\int_{\mathcal{B}(x_0,r)} y^2 dx \leq C_N r^{2N}, \qquad \forall r \in (0,R).
$$

• Let $P = -\Delta + V$ with $V \in L^{\infty}_{loc}(\mathbb{R}^{2})$. T. Carleman showed that any solution $y\in H^1_{loc}({\mathbb R}^2)$ to $Py=0$ (in the sense of distribution) equals zero if it vanishes of infinite order at some $x_0 \in \mathbb{R}^2$. To prove this result, he introduced a new method, now known as the Carleman estimate.

KORKAR KERKER EL VOLO

• Let us recall Carleman's result briefly. We begin with the following notion:

A function $y \in L^2_{loc}(\mathbb{R}^n)$ is said to vanish of infinite order at $x_0 \in \mathbb{R}^n$ if there exists an $R > 0$ so that for each integer $N \in \mathbb{N}$, there is a constant $C_N > 0$ satisfying that

$$
\int_{\mathcal{B}(x_0,r)} y^2 dx \leq C_N r^{2N}, \qquad \forall r \in (0,R).
$$

- Let $P = -\Delta + V$ with $V \in L^{\infty}_{loc}(\mathbb{R}^{2})$. T. Carleman showed that any solution $\mathcal{y} \in H^1_{loc}(\mathbb{R}^2)$ to $P\mathcal{y} = 0$ (in the sense of distribution) equals zero if it vanishes of infinite order at some $x_0\in\mathbb{R}^2.$ To prove this result, he introduced a new method, now known as the Carleman estimate.
- In 1954, C. Müller extended the above method to elliptic equations on \mathbb{R}^n .

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

• How about solutions to other type equations?

- How about solutions to other type equations?
- Generally speaking, one cannot get the above strong result. For example, due to the finite speed of propagation, the about unique continuation property does not hold for hyperbolic equation.

KORKA SERKER ORA

- How about solutions to other type equations?
- Generally speaking, one cannot get the above strong result. For example, due to the finite speed of propagation, the about unique continuation property does not hold for hyperbolic equation.

KORKA SERKER ORA

• Some weaker formulations are as follows:

- How about solutions to other type equations?
- Generally speaking, one cannot get the above strong result. For example, due to the finite speed of propagation, the about unique continuation property does not hold for hyperbolic equation.
- Some weaker formulations are as follows:
- If u vanishes in a subset $F \subset G$, can we conclude that $u|_G = 0$?

KORK ERKER ADE YOUR

- How about solutions to other type equations?
- Generally speaking, one cannot get the above strong result. For example, due to the finite speed of propagation, the about unique continuation property does not hold for hyperbolic equation.
- Some weaker formulations are as follows:
- If u vanishes in a subset $F \subset G$, can we conclude that $u|_G = 0$?
- Does $u|_F = 0$ imply $u|_{O(F)} = 0$? Here $O(F)$ is an (open) neighborhood of F.

KORK ERKER ADE YOUR

• The study of UCP for PDEs began at the very beginning of the last century.

イロト イ御 トイミト イミト ニミー りんぴ

- The study of UCP for PDEs began at the very beginning of the last century.
- Especially, there is a climax in the last 1950-70's. The contributors include Calderón, Hörmander, Nirenberg etc.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

- The study of UCP for PDEs began at the very beginning of the last century.
- Especially, there is a climax in the last 1950-70's. The contributors include Calderón, Hörmander, Nirenberg etc.
- Classical results/tools include Carleman estimate, Frequency method, and so on.

KORKA SERKER ORA

• In the recent 20 years, due to applications, the study of UCP is active again.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• In the recent 20 years, due to applications, the study of UCP is active again.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

• Some typical applications are as follows:

- In the recent 20 years, due to applications, the study of UCP is active again.
- Some typical applications are as follows:
- In Control theory, an approximate controllability problem can be reduced to a suitable unique continuation problem (e.g. Russell, SIAM Rev. 20 (1978)).

KORK ERKER ADE YOUR

- In the recent 20 years, due to applications, the study of UCP is active again.
- Some typical applications are as follows:
- In Control theory, an approximate controllability problem can be reduced to a suitable unique continuation problem (e.g. Russell, SIAM Rev. 20 (1978)).
- In Inverse problems, the uniqueness of the unknown coefficients can be reduced to a suitable unique continuation problem (e.g. Klibanov, Inverse Problems 8 (1992)).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• Furthermore, UCP has lots of applications in the study of PDEs themselves.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• Furthermore, UCP has lots of applications in the study of PDEs themselves.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• Some typical applications are:

- Furthermore, UCP has lots of applications in the study of PDEs themselves.
- Some typical applications are:
- Donnelly & Fefferman, Invent. Math. 1988, for the study of nodal sets of solutions.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- Furthermore, UCP has lots of applications in the study of PDEs themselves.
- Some typical applications are:
- Donnelly & Fefferman, Invent. Math. 1988, for the study of nodal sets of solutions.
- Bourgain & Kenig, Invent. Math. 2005, for the study of the Anderson localization.

KORKA SERKER ORA

- Furthermore, UCP has lots of applications in the study of PDEs themselves.
- Some typical applications are:
- Donnelly & Fefferman, Invent. Math. 1988, for the study of nodal sets of solutions.
- Bourgain & Kenig, Invent. Math. 2005, for the study of the Anderson localization.
- Escauriaza, Kenig, Ponce & Vega, Comm. Math. Phys. 2011, for the study of concentration profiles of blow-up solutions.

KORK ERKER ADE YOUR

2. Carleman estimate for PDEs

• Let $P(x, D)$ be a *m*-th order partial differential operator with smooth bounded coefficients. A Carleman estimate is an estimate in the following forms:

$$
\sum_{|\alpha| \leq m-1} \tau^{2(m-|\alpha|)-1} \int_{\mathbb{R}^n} |D^{\alpha} u|^2 e^{2\tau \varphi} dx
$$

$$
\leq K_1 \int_{\mathbb{R}^n} |P(x, D) u|^2 e^{2\tau \varphi} dx, \quad u \in C_0^{\infty}(G), \tau > \tau_0;
$$

$$
\sum_{|\alpha| \leq m-1} \tau^{2(m-|\alpha|)-1} \int_{\mathbb{R}^n} |D^{\alpha} u|^2 e^{2\tau \varphi} dx
$$

$$
\leq K_2 \int_{\mathbb{R}^n} |P(x, D) u|^2 e^{2\tau \varphi} dx + K_3 \sum_{|\alpha| \leq m-2} \tau^{2(m-|\alpha|)-1} \int_{\mathbb{R}^n} |D^{\alpha} u|^2 e^{2\tau \varphi} dx,
$$

 $u \in C_0^{\infty}(G), \quad \tau > \tau_0.$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

• Let us consider some examples.

- Let us consider some examples.
- Let $a > 0$. It holds that

$$
2a\int_{\mathbb{R}}|u|^2e^{at^2}dt\leq \int_{\mathbb{R}}\left|\frac{du}{dt}\right|^2e^{at^2}dt,\quad u\in C_0^{\infty}(\mathbb{R}).\qquad (3)
$$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

- Let us consider some examples.
- Let $a > 0$. It holds that

$$
2a\int_{\mathbb{R}}|u|^2e^{at^2}dt\leq \int_{\mathbb{R}}\left|\frac{du}{dt}\right|^2e^{at^2}dt,\quad u\in C_0^{\infty}(\mathbb{R}).\qquad (3)
$$

• Proof. Set $v(t) = u(t)e^{at^2/2}$. By means of an integration by parts,

$$
\int_{\mathbb{R}} |u'(t)|^2 e^{at^2} dt = \int_{\mathbb{R}} |v'(t) - atv(t)|^2 dt
$$

=
$$
\int_{\mathbb{R}} |v'(t) + atv(t)|^2 dt + 2a \int_{\mathbb{R}} |v(t)|^2 dt
$$

$$
\geq 2a \int_{\mathbb{R}} |u(t)|^2 e^{at^2} dt.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^
• Let α be a real constant. The estimate holds

$$
4\alpha\int_{\mathbb{R}^2}|v|^2e^{\alpha(t^2+s^2)}dsdt\leq \int_{\mathbb{R}^2}\left|\frac{\partial v}{\partial s}+i\frac{\partial v}{\partial t}\right|^2e^{\alpha(t^2+s^2)}dsdt.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

• Let α be a real constant. The estimate holds

$$
4\alpha\int_{\mathbb{R}^2}|v|^2e^{\alpha(t^2+s^2)}dsdt\leq \int_{\mathbb{R}^2}\left|\frac{\partial v}{\partial s}+i\frac{\partial v}{\partial t}\right|^2e^{\alpha(t^2+s^2)}dsdt.
$$

• Writing

$$
v(s,t)e^{\frac{1}{2}\alpha(s^2+t^2)}=w(s,t).
$$

By integration by parts, we have

$$
\int_{\mathbb{R}^2} \left| \frac{\partial v}{\partial s} + i \frac{\partial v}{\partial t} \right|^2 e^{\alpha (t^2 + s^2)} ds dt
$$
\n
$$
= \int_{\mathbb{R}^2} \left| \frac{\partial w}{\partial s} + i \frac{\partial w}{\partial t} - \alpha (s + it) w \right|^2 ds dt
$$
\n
$$
= \int_{\mathbb{R}^2} \left| \frac{\partial w}{\partial s} - i \frac{\partial w}{\partial t} + \alpha (s - it) w \right|^2 ds dt + 4\alpha \int_{\mathbb{R}^2} |w|^2 ds dt.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

• Generally, we have the following result.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- Generally, we have the following result.
- Let $A(x) = \sum_{n=1}^{n}$ j=1 $a_{jk}x_jx_k$,

where $a_{jk} = a_{kj}, j, k = 1, \cdots, n$.

- Generally, we have the following result.
- Let

$$
A(x)=\sum_{j=1}^n a_{jk}x_jx_k,
$$

where $a_{jk} = a_{kj}, j, k = 1, \cdots, n$.

• Let $b = (b_1, \dots, b_n)$ be a vector in C^n , then it holds that

$$
2\sum_{j,k=1}^n a_{jk}b_j\overline{b}_k\int_{\mathbb{R}^n}|u|^2e^A dx\leq \int_{\mathbb{R}^n}\Big|\sum_{j=1}^n b_jD_ju\Big|^2e^A dx, \ \forall u\in C_0^{\infty}(R_n)\,.
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

• Consider the following stochastic parabolic equation:

$$
dy - \Delta y dt = aydt + bydW(t) \qquad \text{in } G \times (0, T). \tag{4}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

• Consider the following stochastic parabolic equation:

$$
dy - \Delta y dt = aydt + bydW(t) \qquad \text{in } G \times (0, T). \tag{4}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

• Here $a\in L^\infty_\mathbb{F}(0,\,T;L^\infty(G))$ and $b\in L^\infty_\mathbb{F}(0,\,T;\,W^{1,\infty}(G)).$

• Consider the following stochastic parabolic equation:

$$
dy - \Delta y dt = aydt + bydW(t) \qquad \text{in } G \times (0, T). \tag{4}
$$

KORKAR KERKER EL VOLO

- Here $a\in L^\infty_\mathbb{F}(0,\,T;L^\infty(G))$ and $b\in L^\infty_\mathbb{F}(0,\,T;\,W^{1,\infty}(G)).$
- Theorem 4(X. Zhang, Differential Integral Equations, 2008): Let $G_0 \subset G$. If $y = 0$ in $G_0 \times (0, T)$, P-a.s., then $y = 0$ in $G \times (0, T)$, P-a.s.

• Consider the following stochastic parabolic equation:

$$
dy - \Delta y dt = aydt + bydW(t) \qquad \text{in } G \times (0, T). \tag{4}
$$

- Here $a\in L^\infty_\mathbb{F}(0,\,T;L^\infty(G))$ and $b\in L^\infty_\mathbb{F}(0,\,T;\,W^{1,\infty}(G)).$
- Theorem 4(X. Zhang, Differential Integral Equations, 2008): Let $G_0 \subset G$. If $v = 0$ in $G_0 \times (0, T)$, P-a.s., then $v = 0$ in $G \times (0, T)$, P-a.s.
- Theorem 5(S. Tang, et al, SICON, 2009): Let $G_0 \subset G$. If G be bounded domain with a C^2 boundary, $y(0) \in L^2(G)$ and $y = 0$ on $(0, T) \times \partial G$, then for any $t \in (0, T]$,

$$
\mathbb{E}|y(t)|_{L^2(G)}^2\leq C(t)\int_0^T\int_{G_0}|y|^2dxds.
$$

• Borrowing some idea from Escauriaza, Duke Math. J., 2000, we prove that

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

- Borrowing some idea from Escauriaza, Duke Math. J., 2000, we prove that
- Theorem 6(L & Z. Yin, ESAIM:COCV,2015): Let $G_0 \subset G$. 1. If y = 0 on $G_0 \times \{t_0\}$, P-a.s., for a $t_0 \in (0, T]$, then y = 0 on $G \times \{t_0\}$, P-a.s.
	- 2. If y = 0 on $\partial G \times (0, T)$, then y = 0 on $G \times (0, T)$, P-a.s.
	- 3. If G is bounded and convex, then

$$
\mathbb{E}|y(\mathcal{T}_0)|_{L^2(G)}^2 \leq C|y(0)|_{L^2(G)}^{2-2\delta} \big(\mathbb{E}|y(\mathcal{T}_0)|_{L^2(G_0)}^2\big)^{\delta}
$$

KORKA SERKER ORA

for some $\delta \in (0,1)$.

• How about the strong UCP?

- How about the strong UCP?
- Theorem $\overline{J}(\text{QL}, 2020)$: Let $y \in L^2_{\mathbb{F}}(0, T; H^1_{loc}(\Omega)) \cap L^2_{\mathbb{F}}(\Omega;$ $C([0, T]; L^2_{loc}(B_1))$ solves

$$
dy - \Delta y dt = aydt + bydW \text{ in } \Omega \times (0, T). \tag{5}
$$

If for every $k \in \mathbb{N}$ we have

$$
\mathbb{E}\int_{B_r} y^2(x,t_0)\,dx = O(r^{2k}), \text{ as } r \to 0,
$$
 (6)

KORK STRAIN A BAR SHOP

then $y(\cdot,t_0) = 0$, in G, P-a.s. Furthermore, if [\(8\)](#page-47-0) holds for any $t \in (0, T)$, then $y = 0$, in $G \times (0, T)$, P-a.s.

• Is Theorem 7 is an easy corollary of the UCP for deterministic heat equation?

イロト イ御 トイミト イミト ニミー りんぴ

- Is Theorem 7 is an easy corollary of the UCP for deterministic heat equation?
- Let

$$
z=e^{\ell}y, \quad \ell=-b(t,x)W(t).
$$

イロト イ御 トイミト イミト ニミー りんぴ

- Is Theorem 7 is an easy corollary of the UCP for deterministic heat equation?
- Let

$$
z=e^{\ell}y, \quad \ell=-b(t,x)W(t).
$$

• Then,

 $dz = \Delta z dt - (b_t W - a + b^2 + W \Delta b + |\nabla b|^2 W^2) z dt + 2W \nabla b \cdot \nabla z dt.$

• Is Theorem 7 is an easy corollary of the UCP for deterministic heat equation?

• Let

$$
z=e^{\ell}y, \quad \ell=-b(t,x)W(t).
$$

• Then,

$$
dz = \Delta z dt - (b_t W - a + b^2 + W \Delta b + |\nabla b|^2 W^2) z dt + 2W \nabla b \cdot \nabla z dt.
$$

• Hence, z solves the following heat equation with random coefficients

$$
z_t - \Delta z = 2e^{\ell} W \nabla b \cdot \nabla z - (b_t W - a + b^2 + W \Delta b + |\nabla b|^2 W^2) z.
$$
\n(7)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

• Can we regard the sample point ω as a parameter and apply the UCP for deterministic heat equation to get our result?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

• Can we regard the sample point ω as a parameter and apply the UCP for deterministic heat equation to get our result?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• One can show the following result:

- Can we regard the sample point ω as a parameter and apply the UCP for deterministic heat equation to get our result?
- One can show the following result:
- If for every $k \in \mathbb{N}$ we have

$$
\int_{B_r} y^2 \left(\omega, x, t_0 \right) dx = O(r^{2k}), \text{ as } r \to 0, \quad \mathbb{P}\text{-a.s.,}
$$
 (8)

KORKA SERKER ORA

then $y(\cdot,t_0) = 0$, in G, P-a.s. Furthermore, if $y = 0$ on $\partial G \times$ $(0, T)$, then $y = 0$, in $G \times (0, T)$, P-a.s.

- Can we regard the sample point ω as a parameter and apply the UCP for deterministic heat equation to get our result?
- One can show the following result:
- If for every $k \in \mathbb{N}$ we have

$$
\int_{B_r} y^2 \left(\omega, x, t_0 \right) dx = O(r^{2k}), \text{ as } r \to 0, \quad \mathbb{P}\text{-a.s.,}
$$
 (8)

KORKA SERKER ORA

then $y(\cdot,t_0) = 0$, in G, P-a.s. Furthermore, if $y = 0$ on $\partial G \times$ $(0, T)$, then $y = 0$, in $G \times (0, T)$, P-a.s.

• However, by the above argument, we need a pointwise assumption rather than the assumption on the expectation.

イロト イ御 トイミト イミト ニミー りんぴ

• Theorem 7 is a corollary of following result:

- Theorem 7 is a corollary of following result:
- Theorem 8(two-sphere one-cylinder inequality in the interior) $(QL, 2016)$: Let R be a positive number and $t_0\in\mathbb{R}.$ Assume that $u\in L^2_{\mathbb{F}}(t_0-R^2,t_0;H^1(B_1))\cap$ $L^2_{\mathbb F}(\Omega; C([t_0-R^2,t_0];L^2(B_1))$ is a solution to

$$
du - \Delta u dt = audt + budW \text{ in } B_R \times (t_0 - R^2, t_0]. \tag{9}
$$

Then there exist constants $\eta_1 \in (0,1)$ and C, $C \geq 1$, such that for every r and ρ such that $0 < r \leq \rho \leq \eta_1 R$ we have

$$
\mathbb{E}\int_{B_{\rho}}u^{2}(x,t_{0})dx\leq\frac{CR}{\rho}\left(R^{-2}\mathbb{E}\int_{B_{R}\times(t_{0}-R^{2},t_{0})}u^{2}dxdt\right)^{1-\theta_{1}}\left(\mathbb{E}\int_{B_{r}}u^{2}(x,t_{0})dx\right)^{\theta_{1}},\tag{10}
$$

where

$$
\theta_1 = \frac{1}{C \log \frac{R}{r}}.\tag{11}
$$

KORKA SERKER ORA

• Proof of Theorem 8 is based on Carleman estimate.

- Proof of Theorem 8 is based on Carleman estimate.
- Let

$$
\theta(s) = s^{1/2} \left(\log \frac{1}{s} \right)^{3/2}, \ s \in (0,1]. \tag{12}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- Proof of Theorem 8 is based on Carleman estimate.
- Let

$$
\theta(s) = s^{1/2} \left(\log \frac{1}{s} \right)^{3/2}, \ s \in (0, 1]. \tag{12}
$$

イロト イ御 トイミト イミト ニミー りんぴ

• Let $\gamma \geq 1$ and

$$
\sigma(s) = s \exp\left(-\int_0^{\gamma s} \left(1 - \exp\left(-\int_0^t \frac{\theta(\eta)}{\eta} d\eta\right)\right) \frac{dt}{t}\right) .
$$
 (13)

- Proof of Theorem 8 is based on Carleman estimate.
- Let $1/2$ $\left(\log \frac{1}{2}\right)^{3/2}$

$$
\theta\left(s\right) = s^{1/2}\left(\log\frac{1}{s}\right) \qquad ,\, s\in\left(0,1\right].\tag{12}
$$

イロト イ御 トイミト イミト ニミー りんぴ

• Let $\gamma \geq 1$ and

$$
\sigma(s) = s \exp\left(-\int_0^{\gamma s} \left(1 - \exp\left(-\int_0^t \frac{\theta(\eta)}{\eta} d\eta\right)\right) \frac{dt}{t}\right) .
$$
 (13)

• Set

$$
\phi(x,t) = -\frac{|x|^2}{8(T_0 - t + \lambda)} - (\alpha + 1) \log \sigma (T_0 - t + \lambda).
$$
 (14)

OUTLINE 1. INTRODUCTION 2. CARLEMAN ESTIMATE 3. OBSERVABILITY OF STOCHASTIC HEAT EQUATIONS 4. OBSERVABILITY

• Lemma 1: There exist constants $C \geq 1$, $\eta_0 \in (0,1)$ and $\delta_1 \in (0,1)$, such that for every $\alpha, \, \alpha \geq 2, \, \lambda, \, 0 < \lambda \leq \frac{\delta^2}{4}$ $\frac{1}{4\alpha}$, $\delta \in (0, \delta_1]$ and *u* solves $du - \Delta u dt = \text{audt} + \text{budW}(t)$ in $\mathbb{R}^n \times (0, \infty)$,

with supp $u\subset Q\stackrel{\triangle}{=}B_{\eta_0}\times[0,\delta^2/2\alpha),$ the following inequality holds true E Z Q $\left\{ (T_0-t+\lambda) \left[\Delta v + (|\nabla \phi|^2 - \partial_t \phi) v \right] - \frac{1}{2} \right\}$ $\frac{1}{2}v$ $\left\{ (7_0-t+\lambda)e^{t\phi}\left(du-\Delta u dt\right)dx \right\}$ $+C\left(e^{C_0}\gamma\right)^{2\alpha+\frac{5}{2}}\mathbb{E}$) $\int\limits_Q [u^2 + (T_0 - t + \lambda) |\nabla u|^2] e^{2\phi} dx dt$ $\geq \frac{\alpha+1}{2}$ $\frac{+1}{\mathsf{C}}\mathbb{E}\mathsf{J}$ $\int\limits_{Q}\theta\big(\gamma(\mathcal{T}_0-t+\lambda)\big)\,u^2\mathrm{e}^{2\phi}\,dxdt+\frac{1}{C}$ $\frac{1}{C}\mathbb{E} \int$ $\int\limits_{Q}\theta\big(\gamma(\mathcal{T}_0\!-\!t\!+\!\lambda)\big)t|\nabla u|^2\!\mathop{\mathrm{e}}\nolimits^{2\phi}$ dxdt $+E$ $\int\limits_Q |Sv|^2 dxdt + \lambda^2 \mathbb{E}\int$ $\int_{\mathbb{R}^n} |\nabla \nu(x,0)|^2 dx + \frac{\lambda}{2}$ $\frac{\lambda}{2} \mathbb{E} \int$ $\int_{\mathbb{R}^n} v(x,0)^2 dx$ $-\lambda^2 \mathbb{E}$ $\int_{\mathbb{R}^n} \left(|\nabla \phi(x,0)|^2 - \partial_t \phi(x,0) \right) v^2(x,0) dx,$

KORKA SERKER ORA

where $Sv = (T_0 - t + \lambda) [\Delta v + (|\nabla \phi|^2 + \partial_t \phi) v] - \frac{1}{2} v$.

4. Observability for Stochastic Wave Equations

• Consider the following stochastic wave equation:

$$
adz_t - \Delta zdt = [b_1z_t + (b_2, \nabla z) + b_3z]dt + b_4z dW(t) \qquad (15)
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

4. Observability for Stochastic Wave Equations

• Consider the following stochastic wave equation:

$$
adz_t - \Delta zdt = [b_1z_t + (b_2, \nabla z) + b_3z]dt + b_4z dW(t) \qquad (15)
$$

• Theorem 13 (L & Yin, 2020, COCV): Let $x_0 \in \Gamma \setminus \partial \Gamma$ such that $\frac{\partial a(x_0,0)}{\partial \nu}$ < 0, and let Γ satisfy the outer paraboloid condition with

$$
\kappa < \frac{-\frac{\partial a}{\partial \nu}(x_0,0)}{4(|a|_{L^\infty(B_\rho(x_0,0))}+1)}.\tag{16}
$$

Let $y\in L^2_\mathbb{F}(\Omega;C([0,2\tau];H^1_{loc}(\mathbb{R}^n)))\cap L^2_\mathbb{F}(\Omega;C^1([0,2\tau];L^2_{loc}(\mathbb{R}^n)))$ solve the equation [\(1\)](#page-5-0) satisfying that

$$
y = \frac{\partial y}{\partial \nu} = 0 \quad \text{ on } (0, 2T) \times \Gamma, \; \mathbb{P}\text{-a.s.}
$$
 (17)

Then, there is a neighborhood V of x_0 and $T_1 \in (0, T)$ such that

$$
y = 0 \quad \text{in } (\mathcal{V} \cap D^+) \times (T - T_1, T + T_1), \; \mathbb{P}\text{-a.s.} \qquad (18)
$$

• Lemma 2: Let $\ell, \Psi \in C^2((0, T) \times \mathbb{R}^n)$. Assume *u* is an $H^2_{loc}(\mathbb{R}^n)$ -valued $\{\mathcal{F}_t\}_{t \geq 0}$ adapted process such that u_t is an $L^2(\mathbb{R}^n)$ -valued semimartingale. Set $\theta = e^{\ell}$ and $v = \theta u$. Then, for a.e. $x \in \mathbb{R}^n$ and $\mathbb{P}\text{-a.s. } \omega \in \Omega$,

$$
\theta\left(-2a\ell_{t}v_{t}+2\nabla\ell\cdot\nabla v+\Psi v\right)\left(adu_{t}-\Delta u dt\right) \n+\sum_{i=1}^{n}\Big[\sum_{j=1}^{n}\left(2\ell_{j}v_{i}v_{j}-\ell_{i}v_{j}^{2}\right)-2\ell_{t}v_{i}v_{t}+a\ell_{i}v_{t}^{2}+\Psi v_{i}v-\left(A\ell_{i}+\frac{\Psi_{i}}{2}\right)v^{2}\Big]_{i}dt \n+d\Big[a\sum_{i=1}^{n}\ell_{t}v_{i}^{2}-2a\sum_{i=1}^{n}\ell_{i}v_{i}v_{t}+a^{2}\ell_{t}v_{t}^{2}-a\Psi v_{t}v+\left(aA\ell_{t}+\frac{(a\Psi)_{t}}{2}\right)v^{2}\Big] \n=\Big\{\Big[(a^{2}\ell_{t})_{t}+\sum_{i=1}^{n}(a\ell_{i})_{i}-a\Psi\Big]v_{t}^{2}-2\sum_{i=1}^{n}[(a\ell_{i})_{t}+(a\ell_{t})_{i}]v_{i}v_{t} \n+\sum_{i=1}^{n}\Big[(a\ell_{t})_{t}+\sum_{j=1}^{n}(2\ell_{ij}-\ell_{jj})+\Psi\Big]v_{t}^{2} \n+Bv^{2}+\big(-2a\ell_{t}v_{t}+2\nabla\ell\cdot\nabla v+\Psi v\big)^{2}\Big\}dt+a^{2}\theta^{2}l_{t}(du_{t})^{2},
$$

where A and B are

$$
\begin{cases}\nA \stackrel{\triangle}{=} a(\ell_t^2 - \ell_{tt}) - |\nabla \ell|^2 + \Delta \ell - \Psi, \\
B \stackrel{\triangle}{=} A\Psi + (aA\ell_t)_t - \text{div}(A\nabla \ell) + \left[(a\Psi)_{tt} - \Delta \Psi \right] / 2.\n\end{cases}
$$

• Near 0, we will parameterize Γ by

$$
x_1 = \gamma(x_2, \cdots, x_n), \ |x_2|^2 + \cdots + |x_n|^2 < \rho. \tag{19}
$$

イロト イ御 トイミト イミト ニミー りんぴ

• Near 0, we will parameterize Γ by

$$
x_1 = \gamma(x_2, \cdots, x_n), \ |x_2|^2 + \cdots + |x_n|^2 < \rho. \tag{19}
$$

• We choose κ to satisfy that

$$
\begin{cases}\n\kappa < \frac{\alpha_0}{4(|a|_{L^{\infty}(B_{\rho}(0,0))} + 1)}, \\
-\kappa \sum_{j=2}^n |x_j|^2 < \gamma(x_2, \dots, x_n) \text{ if } \sum_{j=2}^n |x_j|^2 < \rho.\n\end{cases}
$$
\n(20)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

• Near 0, we will parameterize Γ by

$$
x_1 = \gamma(x_2, \cdots, x_n), \ |x_2|^2 + \cdots + |x_n|^2 < \rho. \tag{19}
$$

• We choose κ to satisfy that

$$
\begin{cases}\n\kappa < \frac{\alpha_0}{4(|a|_{L^{\infty}(B_{\rho}(0,0))} + 1)}, \\
-\kappa \sum_{j=2}^n |x_j|^2 < \gamma(x_2, \dots, x_n) \text{ if } \sum_{j=2}^n |x_j|^2 < \rho.\n\end{cases}
$$
\n(20)

• Let N satisfy that $1 - 2N\kappa > 0$ and $\alpha N - 2(M_0 + 1) > 0$. We define a weight function by

$$
\psi(x,t) = Nx_1 + \frac{1}{2}\sum_{j=1}^N |x_j|^2 + \frac{1}{2}t^2 + \frac{1}{2}\varepsilon, \quad \ell = \lambda\psi.
$$
 (21)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

• Consider the following equation:

$$
\begin{cases}\ndz_t - \Delta z dt = [b_1 z_t + (b_2, \nabla z) + b_3 z] dt \\
+ b_4 z dW(t) & \text{in } G \times (0, T), \\
z = 0 & \text{on } \partial G \times (0, T).\n\end{cases}
$$
\n(22)

K ロ X イロ X K ミ X K ミ X ミ → S V Q Q Q

• Consider the following equation:

$$
\begin{cases}\ndz_t - \Delta z dt = [b_1 z_t + (b_2, \nabla z) + b_3 z] dt \\
+ b_4 z dW(t) & \text{in } G \times (0, T), \\
z = 0 & \text{on } \partial G \times (0, T).\n\end{cases}
$$
\n(22)

• Theorem 14(X. Zhang, SIMA, 2009): If $z = 0$ in $O_\delta(\Gamma_0) \times$ $(0, T)$, P-a.s., then $z = 0$ in $G \times (0, T)$, P-a.s.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @
• Consider the following stochastic wave equation:

$$
\begin{cases}\ndz_t - \Delta z dt = (b_1 z_t + b_2 \cdot \nabla z + b_3 z) dt \\
+ (b_4 z + g) dW(t) & \text{in } Q, \\
z = 0 & \text{on } \Sigma, \\
z(0) = z_0, z_t(0) = z_1 & \text{in } G.\n\end{cases}
$$
\n(23)

イロト イ御 トイミト イミト ニミー りんぴ

• Consider the following stochastic wave equation:

$$
\begin{cases}\ndz_{t} - \Delta z dt = (b_{1}z_{t} + b_{2} \cdot \nabla z + b_{3}z) dt \\
+ (b_{4}z + g)dW(t) & \text{in } Q, \\
z = 0 & \text{on } \Sigma, \\
z(0) = z_{0}, z_{t}(0) = z_{1} & \text{in } G.\n\end{cases}
$$
\n(23)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• Here b_i $(1 \le i \le 4)$ are some suitable known functions; while $(z_0,z_1)\in L^2_{\mathcal{F}_0}(\Omega;H^1_0(G)\times L^2(G))$ and $g\in L^2_\mathbb{F}(0,\,T;L^2(G))$ are unknown.

• Theorem 15(L & Zhang, CPAM, 2015): Assume that the so-lution z to [\(23\)](#page-72-0) satisfies that $z(T) = 0$ in G, P-a.s. Then it holds that

$$
\begin{aligned} &\left| \left(z_0, z_1 \right) \right|_{L^2_{\mathcal{F}_0}(\Omega; H^1_0(\mathsf{G}) \times L^2(\mathsf{G}))} + \left| \sqrt{\mathsf{T} - t} g \right|_{L^2_{\mathbb{F}}(0, \mathsf{T}; L^2(\mathsf{G}))} \\ &\leq C \left| \frac{\partial z}{\partial \nu} \right|_{L^2_{\mathbb{F}}(0, \mathsf{T}; L^2(\mathsf{T}_0))} . \end{aligned}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• The same conclusion as that in Theorem 10 does NOT hold true even for the deterministic wave equation. Indeed, we choose any $y\in\mathcal{C}_0^\infty(Q)$ so that it does not vanish in some proper nonempty subdomain of Q. Put $f = y_{tt} - \Delta y$. Then, it is easy to see that y solves the following wave equation

$$
\begin{cases}\ny_{tt} - \Delta y = f & \text{in } Q, \\
y = 0, & \text{on } \Sigma, \\
y(0) = 0, y_t(0) = 0 & \text{in } G.\n\end{cases}
$$

One can show that $y(T) = 0$ in G and $\frac{\partial y}{\partial \nu} = 0$ on Σ. However, it is clear that f does not vanish in Q .

KORK ERKER ADE YOUR

The main difficulty of the study of the control and observation problems for SPDEs.

• 1. Very few are known for SPDEs., i.e., the well-posedness results of the nonhomogeneous boundary value problems for SPDEs, the propagation of singularities results of the solution for SPDEs, etc.

KORKA SERKER ORA

The main difficulty of the study of the control and observation problems for SPDEs.

- 1. Very few are known for SPDEs., i.e., the well-posedness results of the nonhomogeneous boundary value problems for SPDEs, the propagation of singularities results of the solution for SPDEs, etc.
- 2. The stochastic settings lead some useful methods invalid, for example, the lost of the compact embedding for the state spaces, i.e., although $L^2(\Omega; H_0^1(G)) \subset L^2(\Omega; L^2(G))$, the embedding is not compact, which violates the compactness -uniqueness argument. Another example is that the irregularity of the solution with respect to the time variable.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

OUTLINE 1. INTRODUCTION 2. CARLEMAN ESTIMATE 3. OBSERVABILITY OF STOCHASTIC HEAT EQUATIONS 4. OBSERVABILITY

.

Thank you!

イロト イ御 トイミト イミト ニミー りんぴ